$$
\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3}
$$

C24	0.8990 (7)	0.1075 (5)	0.6557 (7)	0.133 (3)
C25	0.9461 (6)	0.0841 (5)	0.5737 (7)	0.132 (3)
C26	0.9244 (5)	0.1103 (4)	0.4776 (6)	0.101 (2)
Nl^{\prime}	0.8730 (3)	-0.2973 (3)	0.5414 (4)	0.095 (2)
C2'	0.8879 (4)	-0.3634 (4)	0.5898 (5)	0.104 (2)
N3 ${ }^{\prime}$	0.8133 (4)	-0.3951 (3)	0.6259 (4)	0.094 (2)
C4 ${ }^{\prime}$	0.7366 (4)	-0.3867 (3)	0.5813 (4)	0.076 (2)
C5 ${ }^{\prime}$	0.7319 (3)	-0.3327 (3)	0.5097 (4)	0.069 (1)
N5'	0.6619 (3)	-0.3043 (2)	0.4546 (3)	0.063 (1)
C6 ${ }^{\prime}$	0.5770 (4)	-0.3239 (3)	0.4432 (4)	0.079 (2)
$C 7^{\prime}$	0.5235 (3)	-0.2857 (3)	0.3835 (4)	0.084 (2)
C8 ${ }^{\prime}$	0.5557 (4)	-0.2264 (3)	0.3324 (4)	0.089 (2)
$\mathrm{N} 9^{\prime}$	0.6402 (3)	-0.2083 (2)	0.3486 (3)	0.073 (1)
C 9^{\prime}	0.6925 (3)	-0.2470 (3)	0.4094 (4)	0.063 (2)
$\mathrm{N} 10^{\prime}$	0.7743 (3)	-0.2346 (2)	0.4306 (3)	0.073 (1)
$\mathrm{C} 10^{\prime}$	0.7966 (3)	-0.2888 (3)	0.4934 (4)	0.069 (1)
C11 ${ }^{\prime}$	0.9471 (4)	-0.2557 (3)	0.5172 (5)	0.113 (2)
Cl2 ${ }^{\prime}$	0.8296 (5)	-0.4503 (4)	0.6999 (6)	0.150 (3)
O13'	0.6752 (3)	-0.4236 (2)	0.6034 (3)	0.101 (1)
O14'	0.5563 (2)	-0.3824 (2)	0.4924 (3)	0.104 (1)
C15 ${ }^{\prime}$	0.4281 (5)	-0.3009 (4)	0.3807 (6)	0.125 (3)
C16 ${ }^{\prime}$	0.3939 (6)	-0.3224 (5)	0.2814 (6)	0.174 (4)
C17 ${ }^{\prime}$	0.3919 (6)	-0.3894 (5)	0.2472 (7)	0.198 (5)
C18 ${ }^{\prime}$	0.3596 (7)	-0.4120 (5)	0.1459 (8)	0.204 (5)
O19'	0.5104 (3)	-0.1897 (2)	0.2758 (3)	0.125 (2)
$\mathrm{C} 20^{\prime}$	0.6734 (4)	-0.1469 (3)	0.2981 (4)	0.086 (2)
C21 ${ }^{\prime}$	0.6654 (4)	-0.0808 (3)	0.3610 (4)	0.077 (2)
C22 ${ }^{\prime}$	0.7346 (5)	-0.0572 (3)	0.4210 (5)	0.104 (2)
C23 ${ }^{\prime}$	0.7256 (7)	0.0025 (4)	0.4768 (6)	0.130 (3)
C24 ${ }^{\prime}$	0.6535 (8)	0.0380 (4)	0.4761 (6)	0.131 (3)
C25 ${ }^{\prime}$	0.5858 (6)	0.0148 (4)	0.4172 (7)	0.124 (3)
C26 ${ }^{\prime}$	0.5926 (5)	-0.0453 (4)	0.3600 (5)	0.100 (2)

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: BM1044). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Bird, C. W., Nyburg, S. C. \& Perkins, A. W. (1991). Acta Cryst. C47, 1943-1945.
Das, A. K., Datta, M., Mazumdar, S. K.. Bhaumik, G., Mazumdar, B. \& Talapatra, S. K. (1994). Acta Crest. C50, 952-954.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA
Kaminski, J. J., Solomon, D. M., Conn, D. J., Wong, S. C., Chiu, P. J. S., Massa, T., Siegel, M. I. \& Watnick, A. S. (1989). Med. Chem. 32, 1118-1127.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A Sistem of Computer Programs for the Automatic Solution of Cristal Structures from Xray Diffraction Data. Universities of York, England. and Louvain, Belgium.
Nardelli, M. (1983). Comput. Chem. 7. 95-98.
Sheldrick, G. M. (1976). SHELX76. Program for Cnsstal Structure Determination. University of Cambridge. England.

Table 2. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$

Acta Cryst. (1996). C52, 2078-2081
3-Acetyl-6-bromocoumarin

M. K. Kokila, ${ }^{a}$ Puttaraja, ${ }^{a}$ M. V. Kulkarni ${ }^{b}$
and N. C. Shivaprakash ${ }^{c}$
${ }^{a}$ Department of Physics, Bangalore University, Jnanabharati Campus, Bangalore 560 056, India, ${ }^{b}$ Department of Organic Chemistry, Karnatak University; Dharwad 580 003, India, and 'X-RD Laboratory, ISU, IISc, Bangalore 560 012, India

(Received 19 July 1994; accepted 25 Jul? 1995)

The structure of (I) was solved by direct methods using MULTAN78 (Main et al., 1978) with $E>1.47$. The phase set with best combined figure of merit was used in computing the E map. The full structure (two molecules in the asymmetric unit) was obtained from this map. Full-matrix least-squares anisotropic refinement of the non-H atoms was carried out with SHELX76 (Sheldrick, 1976). Atoms C15, C16, C17 and C18 of both molecules have increasingly large displacement parameters. H atoms were calculated and allowed to ride on their parent atoms, but those attached to the O 14 and $\mathrm{O} 14^{\prime}$ atoms could not be located.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: PARST (Nardelli, 1983).

Abstract

The crystal structure of the title compound, $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{BrO}_{3}$, has been determined using 1549 observed reflections with $I>2.5 \sigma(I)$. The coumarin moiety is planar and makes a dihedral angle of $6.6(4)^{\circ}$ with the mean plane of the acetyl group attached to $\mathrm{C}(3)$. The molecules adopt the S-cis configuration in the crystal and are linked by weak $\mathrm{C}-\mathrm{H} \ldots \mathrm{O}$ interactions.

Comment

Coumarins with various substituents at position 3 have been found to exhibit a variety of biological properties (Feurer, 1974) and are of spectroscopic interest (Clinging, Dean \& Houghton, 1970). 3-Acetylcoumarins have
been reported to have antimicrobial properties (Ishii, 1952) and are useful synthons for coumarin analogs of chloramphenicol (Bevinakatti \& Badiger, 1980) and 3coumarinyl thiazoles (Panigrahi \& Raut, 1971). In view of the biological importance of the compound and as a continuation of the structure analysis of coumarin derivatives (Vasudevan, Puttaraja \& Kulkarni, 1990, 1991) the determination of the structure of the title compound, (I), has been undertaken.

(I)

A plot of the molecule is shown in Fig. 1. The phenyl ring of the coumarin moiety is highly planar compared to the pyrone ring and makes a dihedral angle of $1.5(3)^{\circ}$ with the mean plane of the pyrone ring. The coumarin

Fig. 1. The structure of the title molecule with 50% probability displacement ellipsoids. H atoms are omitted.
moiety is almost planar, with the Br atom displaced from the least-squares plane by 0.070 (8) A. The acetyl group is planar and makes a dihedral angle of $6.0(4)^{\circ}$ with the mean plane of the pyrone ring and $6.6(4)^{\circ}$ with the mean plane of the coumarin moiety.

The bonds $\mathrm{O}(1)-\mathrm{C}(2)[1.422(10) \AA]$ and $\mathrm{O}(1)-\mathrm{C}(9)$ [1.419 (10) A] are nearly equal in length, but slightly longer (by 6σ) than the analogous bonds in $3,3^{\prime}$-methyl-enebis(6-bromo-4-hydroxycoumarin) (Alcock \& Hough, 1972). The bonds $C(3)-C(4)[1.394$ (11) \AA] and $C(2)-$ O (2) [1.249 (10) \AA] are longer than previously reported (Shimizu, Kashino \& Haisa, 1975; Vasudevan, Puttaraja \& Kulkarni, 1991) but show double-bond character. Comparison of the $\mathrm{C}(3)-\mathrm{C}(4)$ bond length with that in other coumarin derivatives indicates that this bond length varies from 1.30 to $1.41 \AA$ depending on the groups attached at $\mathrm{C}(3)$ or $\mathrm{C}(4)$ (Shimizu et al., 1975).

The bond angles around $\mathrm{C}(6)[\mathrm{Br}-\mathrm{C}(6)-\mathrm{C}(5)$ $121.8(6), \mathrm{Br}-\mathrm{C}(6)-\mathrm{C}(7) 121.1(6)$ and $\mathrm{C}(5)-\mathrm{C}(6)-$ $\left.\mathrm{C}(7) 117.0(7)^{\circ}\right]$ show variations compared to those reported for $3,3^{\prime}$-methylenebis(6-bromo-4-hydroxycoumarin) by Alcock \& Hough (1972) [118.2 (6), 120.1 (7) and $121.8(9)^{\circ}$, respectively]; this might be a result of the longer $\mathrm{Br}-\mathrm{C}(6)$ distance in (I).

The angles around $\mathrm{C}(2)$ in (I) are 119.9 (7), 112.8 (7) and $127.4(7)^{\circ}$, compared with 117.3 (3), 117.2 (3) and $127.4(7)^{\circ}$ in coumarin (Gavuzzo, Mazza \& Giglio, 1974), and resemble the geometry of a carboxylic group; $\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{O}(1)$ [119.9(7) ${ }^{\circ}$] is smaller than $\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)\left[127.4(3)^{\circ}\right]$, which may result from the steric effect of the substituent at $\mathrm{C}(3)$. The $\mathrm{C}(3)$ carbonyl group is coplanar with the coumarin moiety $\left[\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{O}(3)-4.2(1.0)^{\circ}\right]$ and is

Fig. 2. The molecular packing viewed down the a axis.
cis to $\mathrm{C}(3)-\mathrm{C}(4)$ about the $\mathrm{C}(3)-\mathrm{C}(11)$ bond. This allows maximum separation of $O(2)$ and $O(3)$, which is reflected in the increased bond angles $\mathrm{O}(2)-\mathrm{C}(2)-$ $\mathrm{C}(3)$ [127.4 (7) ${ }^{\circ}$] and $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(3)$ [125.1 (7) $\left.{ }^{\circ}\right]$ and also keeps electronic repulsion to a minimum. The high value of the exocyclic $\mathrm{C}(3)-\mathrm{C}(11)$ bond length [1.540 (11) A] compared to the length of a normal $\mathrm{C}_{s p^{2}}-\mathrm{C}_{s p^{2}}$ bond [1.487 \AA] may be due to σ-electron delocalization.

The view of the crystal packing shown in Fig. 2 indicates that the orientation of $\mathrm{O}(3)$ and $\mathrm{H}(4)$ is almost peri. The intramolecular distance is $2.43(5) \AA$. The corresponding intermolecular distance [2.52 (5) \AA] indicates that the packing is stabilized by such C $\mathrm{H} \cdots \mathrm{O}$ interactions, which can be considered as weak hydrogen bonds (Taylor \& Kennard, 1982; BerkovitchYellin \& Leiserowitz, 1984).

Experimental

Crystals of (I) were supplied by MVK.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{BrO}_{3}$
$M_{r}=267.08$
Triclinic
$P \overline{1}$
$a=4.029(1) \AA$
$b=11.125(2) \AA$
$c=11.775(1) \AA$
$\alpha=97.339(9)^{\circ}$
$\beta=99.948(9)^{\circ}$
$\gamma=90.040(10)^{\circ}$
$V=515.45(16) \AA^{3}$
$Z=2$
$D_{x}=1.721 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.70 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in KI solution

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta-2 \theta$ scans
Absorption correction:
none
1980 measured reflections
1711 independent reflections
1549 observed reflections
$[I \geq 2.5 \sigma(I)]$
Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=20-25^{\circ}$
$\mu=3.93 \mathrm{~mm}^{-1}$
$T=300 \mathrm{~K}$
Prism
$0.2 \times 0.2 \times 0.2 \mathrm{~mm}$
Pale yellow

$$
\begin{aligned}
& \theta_{\max }=32.5^{\circ} \\
& h=-4 \rightarrow 4 \\
& k=0 \rightarrow 13 \\
& l=-13 \rightarrow 13 \\
& 3 \text { standard reflections } \\
& \text { monitored every } 100 \\
& \text { reflections } \\
& \text { intensity decay: } \\
& \text { insignificant }
\end{aligned}
$$

Refinement

Refinement on F
$R=0.067$
$w R=0.067$
$S=1.298$

1549 reflections
164 parameters
All H-atom parameters
refined
$w=1 / \sigma^{2}(F)$

Atomic scattering factors from Cromer \& Mann (1968) and Stewart, Davidson \& Simpson (1965)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} B_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
\boldsymbol{x}				
	$\quad y$	z	B_{eq}	
Br	$0.4042(3)$	$0.1829(1)$	$0.0091(1)$	$3.9(1)$
$\mathrm{O}(1)$	$0.2884(14)$	$0.1402(4)$	$0.5298(5)$	$3.1(3)$
$\mathrm{O}(2)$	$0.3449(16)$	$0.2080(5)$	$0.7264(5)$	$4.3(3)$
$\mathrm{O}(3)$	$0.9588(17)$	$0.4945(5)$	$0.6763(5)$	$4.5(3)$
$\mathrm{C}(2)$	$0.410(2)$	$0.2249(7)$	$0.6296(7)$	$2.9(4)$
$\mathrm{C}(3)$	$0.6096(19)$	$0.3262(7)$	$0.6029(7)$	$2.5(4)$
$\mathrm{C}(4)$	$0.638(2)$	$0.3363(6)$	$0.4881(7)$	$2.6(4)$
$\mathrm{C}(5)$	$0.518(2)$	$0.2595(6)$	$0.2647(7)$	$2.8(4)$
$\mathrm{C}(6)$	$0.3776(19)$	$0.1683(7)$	$0.1716(7)$	$2.9(4)$
$\mathrm{C}(7)$	$0.209(2)$	$0.0690(7)$	$0.2013(7)$	$3.0(4)$
$\mathrm{C}(8)$	$0.181(2)$	$0.0597(7)$	$0.3194(7)$	$3.1(4)$
$\mathrm{C}(9)$	$0.321(2)$	$0.1495(7)$	$0.4131(7)$	$2.6(4)$
$\mathrm{C}(10)$	$0.4940(19)$	$0.2494(6)$	$0.3862(7)$	$2.5(4)$
$\mathrm{C}(11)$	$0.784(2)$	$0.4187(7)$	$0.7041(7)$	$3.0(4)$
$\mathrm{C}(12)$	$0.746(3)$	$0.4206(8)$	$0.8332(8)$	$4.8(5)$

Table 2. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Br}-\mathrm{C}(6)$	$1.962(8)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.432(11)$
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.422(10)$	$\mathrm{C}(5)-\mathrm{C}(10)$	$1.469(11)$
$\mathrm{O}(1)-\mathrm{C}(9)$	$1.419(10)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.408(11)$
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.249(10)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.432(12)$
$\mathrm{O}(3)-\mathrm{C}(11)$	$1.210(10)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.427(11)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.482(11)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.410(11)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.394(11)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.551(11)$
$\mathrm{C}(4)-\mathrm{C}(10)$	$1.474(11)$	$\mathrm{C}(11)-\mathrm{C}(3)$	$1.540(11)$
$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{C}(2)$	$127.0(6)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$121.3(7)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$119.9(7)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$122.2(7)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$112.8(7)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$117.7(7)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	$127.4(7)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	$121.9(7)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$	$118.6(7)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{O}(1)$	$120.4(7)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120.1(7)$	$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(5)$	$125.9(6)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(11)$	$121.3(7)$	$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(9)$	$114.3(7)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)$	$125.2(7)$	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$119.8(7)$
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)$	$121.8(7)$	$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	$125.1(7)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Br}$	$121.8(6)$	$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{O}(3)$	$114.8(7)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$117.0(7)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{O}(3)$	$120.2(7)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{Br}$	$121.1(6)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(3)$	$125.1(7)$

The atomic coordinates of the non-H atoms were determined by direct methods using NRCVAX SOLVER (Gabe, Le Page, Charland, Lee \& White, 1989) and refined with anisotropic displacement parameters. H atoms were located from difference Fourier maps except for the methyl H atoms, which were fixed from geometrical considerations, and refined with isotropic displacement parameters using NRCVAX.

MKK wishes to thank Professor J. Shashidhara Prasad, Department of Post-Graduate Studies in Physics, Manasagangothri, Mysore, for providing computational facilities.

[^0]
References

Alcock, N. W. \& Hough, E. (1972). Acta Cryst. B28, 1957-1960.
Berkovitch-Yellin, Z. \& Leiserowitz, L. (1984). Acta Cryst. B40, 159165.

Bevinakatti, H. S. \& Badiger, V. V. (1980). J. Heterocycl. Chem. 17, 1701-1703.
Clinging, R., Dean, F. M. \& Houghton, L. E. (1970). J. Chem. Soc. C, pp. 897-900.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 312-324.
Feurer, G. (1974). Progress in Medicinal Chemistry, Vol. 10, edited by G. P. Ellis \& G. B. West, pp. 85-158. London: North Holland.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& Whitc, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Gavuzzo, E., Mazza, F. \& Giglio, E. (1974). Acta Cryst. B30, 13511357.

Ishii, Y. (1952). J. Agric. Chem. Soc. Jpn, 26, 510-513; Chem. Abstr. (1955), 49, 5463h.

Panigrahi, A. K. \& Raut, M. K. (1971). J. Indian Chem. Soc. 48, 665-668.
Shimizu, S., Kashino, S. \& Haisa, M. (1975). Acta Cryst. B31, 12871292.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
Vasudevan, K. T., Puttaraja \& Kulkarni, M. V. (1990). Acta Cryst. C46, 2129-2131.
Vasudevan, K. T., Puttaraja \& Kulkarni, M. V. (1991). Acta Cryst. C47, 775-777.

Acta Cryst. (1996). C52, 2081-2084

5,5-Diethyl-1-methyl-1H,2H,3H,5H-pyrimidine-2-spiro-9'-fluorene-4,6-dione

Yong Gong, ${ }^{a}$ Paul D. Robinson ${ }^{b}$ and Mark J. Baitsch ${ }^{a}$

${ }^{a}$ Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901-4409, USA, and
${ }^{b}$ Department of Geology, Southern Illinois University, Carbondale, IL 62901-4324, USA. E-mail: robinson@geo. siu.edu
(Received IO January 1996; accepted I February I996)

Abstract

The title compound, $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$, was synthesized from the corresponding pyrazolidinedione precursor by 9 fluorenyl substitution and subsequent ring expansion. The hexahydropyrimidinedione (HHPD) ring has a very flattened chair conformation and is nearly perpendicular [$88.79(13)^{\circ}$] to the 2 -spiro- 9^{\prime}-fluorene ring. The two ethyl groups adopt a folded conformation and lie on opposite sides of the HHPD ring. A hydrogen-bonding scheme consisting of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions produces parallel molecular layers.

Comment

Conformational studies of cyclic dipeptides by Xray diffraction and ${ }^{1} \mathrm{H}$ NMR spectroscopy (Gdaniec \& Liberek, 1986; Liberek \& Bednarek, 1978) have demonstrated that piperazinedione rings tend to assume a boat conformation with side chains folding over the ring. Some cyclic dipeptides possessing a rigid conformation are considered to be potential catalysts for asymmetric syntheses (Tanaka, Mori \& Inoue, 1990).

Cyclic retro-inverso dipeptides incorporate malonic acid residues into cyclic dipeptide analogues and reverse the direction of the peptide bond. ${ }^{1} \mathrm{H}$ NMR spectra and semiempirical energy calculations indicate that the most stable conformations of hexahydropyrimidinedione (HHPD) rings with two aromatic side chains are those in which the HHPD ring adopts a planar or a boat structure (Yamazaki, Nunami \& Goodman, 1991). No X-ray structure of a hexahydropyrimidine-4,6-dione has been reported previously. Here we present the crystal structure of 5,5-diethyl-1-methyl-1 $\mathrm{H}, 2 \mathrm{H}, 3 \mathrm{H}, 5 \mathrm{H}$-pyrimidine-2-spiro- 9^{\prime}-fluorene-4,6-dione, (2), which can be regarded as an insertion product of 9 -fluorenylidene into the N N bond of the pyrazolidinedione precursor 4,4-diethyl-1-methylpyrazolidine-3,5-dione, (1). Compound (2) was realised through a ring-expansion process following the reaction of (1) with 9-bromofluorene.

(1)

(2)

An illustration of (2), together with the atomnumbering scheme, is shown in Fig. 1. An initial examination of the HHPD ring showed it to be nearly planar, the mean deviation from its least-squares plane being $0.018 \AA$. However, a subsequent least-squares-plane calculation using only the central portion of the ring (N 1 , N3, C4 and C6) exhibits near perfect planarity (mean deviation $0.001 \AA$) while the $s p^{3}$-hybridized C 2 and C 5 atoms, located at opposite ends of the ring, deviate from the central portion by -0.063 (3) and 0.049 (3) \AA, respectively. Thus, the HHPD conformation can be considered to be a flattened chair form. Torsion angles $\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$ of $5.5(6)^{\circ}$ and $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$ of $-5.1(5)^{\circ}$ also illustrate this point. In addition, the N1 atom is slightly pyramidal as illustrated by the fact that $C 7$ is -0.064 (5) \AA out of the central portion of the HHPD ring plane and cis to the C 2 atom. The position of H3 could not be determined with sufficient accuracy to characterize the N3 atom definitively as either trigonal planar or slightly pyramidal. Since hexahydropyrimidine itself has a flexible chair conformation and pyramidal N atoms (Armarego, 1977), the above results

[^0]: Lists of structure factors, anisotropic displacement parameters and H -atom coordinates have been deposited with the IUCr (Reference: CRI164). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

